Nuprl Lemma : op-cat-comp
∀C:SmallCategory. ∀[I,J,K,f,g:Top].  (cat-comp(op-cat(C)) I J K f g ~ cat-comp(C) K J I g f)
Proof
Definitions occuring in Statement : 
op-cat: op-cat(C)
, 
cat-comp: cat-comp(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
, 
spreadn: spread4, 
op-cat: op-cat(C)
, 
top: Top
Lemmas referenced : 
cat_comp_tuple_lemma, 
top_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}C:SmallCategory.  \mforall{}[I,J,K,f,g:Top].    (cat-comp(op-cat(C))  I  J  K  f  g  \msim{}  cat-comp(C)  K  J  I  g  f)
Date html generated:
2017_10_05-AM-00_46_31
Last ObjectModification:
2017_10_03-PM-00_29_08
Theory : small!categories
Home
Index