Nuprl Lemma : op-cat-comp

C:SmallCategory. ∀[I,J,K,f,g:Top].  (cat-comp(op-cat(C)) cat-comp(C) f)


Proof




Definitions occuring in Statement :  op-cat: op-cat(C) cat-comp: cat-comp(C) small-category: SmallCategory uall: [x:A]. B[x] top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory spreadn: spread4 op-cat: op-cat(C) top: Top
Lemmas referenced :  cat_comp_tuple_lemma top_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}C:SmallCategory.  \mforall{}[I,J,K,f,g:Top].    (cat-comp(op-cat(C))  I  J  K  f  g  \msim{}  cat-comp(C)  K  J  I  g  f)



Date html generated: 2017_10_05-AM-00_46_31
Last ObjectModification: 2017_10_03-PM-00_29_08

Theory : small!categories


Home Index