Nuprl Lemma : op-cat-id

C:SmallCategory. ∀[A:Top]. (cat-id(op-cat(C)) cat-id(C) A)


Proof




Definitions occuring in Statement :  op-cat: op-cat(C) cat-id: cat-id(C) small-category: SmallCategory uall: [x:A]. B[x] top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory spreadn: spread4 op-cat: op-cat(C) top: Top
Lemmas referenced :  cat_id_tuple_lemma top_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom

Latex:
\mforall{}C:SmallCategory.  \mforall{}[A:Top].  (cat-id(op-cat(C))  A  \msim{}  cat-id(C)  A)



Date html generated: 2017_10_05-AM-00_46_34
Last ObjectModification: 2017_10_03-PM-00_26_36

Theory : small!categories


Home Index