Nuprl Lemma : Open_wf
∀[X:Type]. (Open(X) ∈ Type)
Proof
Definitions occuring in Statement : 
Open: Open(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Open: Open(X)
Lemmas referenced : 
Sierpinski_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[X:Type].  (Open(X)  \mmember{}  Type)
Date html generated:
2019_10_31-AM-07_18_46
Last ObjectModification:
2015_12_28-AM-11_20_41
Theory : synthetic!topology
Home
Index