Nuprl Lemma : Open_wf

[X:Type]. (Open(X) ∈ Type)


Proof




Definitions occuring in Statement :  Open: Open(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Open: Open(X)
Lemmas referenced :  Sierpinski_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality hypothesisEquality lemma_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  (Open(X)  \mmember{}  Type)



Date html generated: 2019_10_31-AM-07_18_46
Last ObjectModification: 2015_12_28-AM-11_20_41

Theory : synthetic!topology


Home Index