Nuprl Lemma : Sierpinski_wf
Sierpinski ∈ Type
Proof
Definitions occuring in Statement : 
Sierpinski: Sierpinski
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
Sierpinski: Sierpinski
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
Sierpinski-bottom_wf, 
two-class-equiv-rel, 
equal-wf-T-base, 
iff_wf, 
bool_wf, 
nat_wf, 
quotient_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
independent_isectElimination
Latex:
Sierpinski  \mmember{}  Type
Date html generated:
2019_10_31-AM-06_35_25
Last ObjectModification:
2016_01_17-AM-09_35_55
Theory : synthetic!topology
Home
Index