Nuprl Lemma : Sierpinski_wf

Sierpinski ∈ Type


Proof




Definitions occuring in Statement :  Sierpinski: Sierpinski member: t ∈ T universe: Type
Definitions unfolded in proof :  Sierpinski: Sierpinski member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  Sierpinski-bottom_wf two-class-equiv-rel equal-wf-T-base iff_wf bool_wf nat_wf quotient_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis lambdaEquality hypothesisEquality baseClosed because_Cache independent_isectElimination

Latex:
Sierpinski  \mmember{}  Type



Date html generated: 2019_10_31-AM-06_35_25
Last ObjectModification: 2016_01_17-AM-09_35_55

Theory : synthetic!topology


Home Index