Nuprl Lemma : two-class-equiv-rel

[T:Type]. ∀[t:T].  EquivRel(T;x,y.x t ∈ ⇐⇒ t ∈ T)


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) cand: c∧ B
Lemmas referenced :  equal_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache productElimination independent_functionElimination sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    EquivRel(T;x,y.x  =  t  \mLeftarrow{}{}\mRightarrow{}  y  =  t)



Date html generated: 2019_10_31-AM-06_35_22
Last ObjectModification: 2017_07_28-AM-09_11_55

Theory : synthetic!topology


Home Index