Nuprl Lemma : exception-sqle-is-exception
∀[u,v,t:Base]. is-exception(t) supposing exception(u; v) ≤ t
Proof
Definitions occuring in Statement :
is-exception: is-exception(t)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
base: Base
,
sqle: s ≤ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
is-exception: is-exception(t)
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
Lemmas referenced :
base_wf,
sqle_wf_base,
is-exception_wf,
has-value_wf_base,
exception-not-bottom,
bottom_diverge
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqleTransitivity,
divergentSqle,
sqleRule,
lemma_by_obid,
sqequalHypSubstitution,
independent_functionElimination,
thin,
hypothesis,
voidElimination,
isectElimination,
baseClosed,
because_Cache,
sqequalRule,
axiomSqleEquality,
baseApply,
closedConclusion,
hypothesisEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[u,v,t:Base]. is-exception(t) supposing exception(u; v) \mleq{} t
Date html generated:
2016_05_13-PM-03_28_38
Last ObjectModification:
2016_01_14-PM-06_41_58
Theory : arithmetic
Home
Index