Nuprl Lemma : exception-sqle-is-exception
∀[u,v,t:Base].  is-exception(t) supposing exception(u; v) ≤ t
Proof
Definitions occuring in Statement : 
is-exception: is-exception(t)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
is-exception: is-exception(t)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
sqle_wf_base, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
bottom_diverge
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqleTransitivity, 
divergentSqle, 
sqleRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
isectElimination, 
baseClosed, 
because_Cache, 
sqequalRule, 
axiomSqleEquality, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[u,v,t:Base].    is-exception(t)  supposing  exception(u;  v)  \mleq{}  t
Date html generated:
2016_05_13-PM-03_28_38
Last ObjectModification:
2016_01_14-PM-06_41_58
Theory : arithmetic
Home
Index