Nuprl Lemma : TI-weak-TI

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[Q:T ⟶ ℙ].  (TI(T;x,y.R[x;y];t.Q[t])  weak-TI(T;x,y.R[x;y];t.Q[t]))


Proof




Definitions occuring in Statement :  weak-TI: weak-TI(T;x,y.R[x; y];t.Q[t]) TI: TI(T;x,y.R[x; y];t.Q[t]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q TI: TI(T;x,y.R[x; y];t.Q[t]) weak-TI: weak-TI(T;x,y.R[x; y];t.Q[t]) all: x:A. B[x] member: t ∈ T prop: so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] guard: {T}
Lemmas referenced :  all_wf TI_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut hypothesis independent_functionElimination thin dependent_functionElimination hypothesisEquality applyEquality lemma_by_obid isectElimination setEquality because_Cache sqequalRule lambdaEquality setElimination rename functionEquality cumulativity universeEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    (TI(T;x,y.R[x;y];t.Q[t])  {}\mRightarrow{}  weak-TI(T;x,y.R[x;y];t.Q[t]))



Date html generated: 2016_05_13-PM-03_50_02
Last ObjectModification: 2015_12_26-AM-10_17_33

Theory : bar-induction


Home Index