Nuprl Lemma : ccomb_wf

[P,A,B:Type].  (C ∈ (A ⟶ B ⟶ P) ⟶ B ⟶ A ⟶ P)


Proof




Definitions occuring in Statement :  ccomb: C uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ccomb: C
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality hypothesisEquality functionEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[P,A,B:Type].    (C  \mmember{}  (A  {}\mrightarrow{}  B  {}\mrightarrow{}  P)  {}\mrightarrow{}  B  {}\mrightarrow{}  A  {}\mrightarrow{}  P)



Date html generated: 2016_05_13-PM-03_53_14
Last ObjectModification: 2015_12_26-AM-10_16_52

Theory : bar-induction


Home Index