Nuprl Lemma : ccomb_wf
∀[P,A,B:Type].  (C ∈ (A ⟶ B ⟶ P) ⟶ B ⟶ A ⟶ P)
Proof
Definitions occuring in Statement : 
ccomb: C
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ccomb: C
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[P,A,B:Type].    (C  \mmember{}  (A  {}\mrightarrow{}  B  {}\mrightarrow{}  P)  {}\mrightarrow{}  B  {}\mrightarrow{}  A  {}\mrightarrow{}  P)
Date html generated:
2016_05_13-PM-03_53_14
Last ObjectModification:
2015_12_26-AM-10_16_52
Theory : bar-induction
Home
Index