Nuprl Lemma : member-less_than'
∀[a,b:ℤ].  Ax ∈ less_than'(a;b) supposing less_than'(a;b)
Proof
Definitions occuring in Statement : 
less_than': less_than'(a;b)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
less_than': less_than'(a;b)
, 
prop: ℙ
, 
top: Top
, 
true: True
, 
false: False
Lemmas referenced : 
less_than'_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
intEquality, 
lessCases, 
axiomSqEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    Ax  \mmember{}  less\_than'(a;b)  supposing  less\_than'(a;b)
Date html generated:
2019_06_20-AM-11_19_52
Last ObjectModification:
2018_08_21-PM-10_49_28
Theory : basic_types
Home
Index