Nuprl Lemma : member-less_than'

[a,b:ℤ].  Ax ∈ less_than'(a;b) supposing less_than'(a;b)


Proof




Definitions occuring in Statement :  less_than': less_than'(a;b) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T int: axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a less_than': less_than'(a;b) prop: top: Top true: True false: False
Lemmas referenced :  less_than'_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache intEquality lessCases axiomSqEquality voidElimination voidEquality natural_numberEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    Ax  \mmember{}  less\_than'(a;b)  supposing  less\_than'(a;b)



Date html generated: 2019_06_20-AM-11_19_52
Last ObjectModification: 2018_08_21-PM-10_49_28

Theory : basic_types


Home Index