Nuprl Lemma : apply-ifthenelse-pi1-eq

[T1,U1,T2,U2:Type]. ∀[x:T1 × U1]. ∀[y:T2 × U2]. ∀[b:𝔹].
  ((fst(if then else fi )) if then fst(x) else fst(y) fi  ∈ if then T1 else T2 fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] pi1: fst(t) product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  bool: 𝔹 ifthenelse: if then else fi  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  pi1_wf bool_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity unionElimination thin sqequalRule cut lemma_by_obid isectElimination hypothesisEquality lambdaEquality hypothesis because_Cache productEquality universeEquality isect_memberFormation introduction isect_memberEquality axiomEquality

Latex:
\mforall{}[T1,U1,T2,U2:Type].  \mforall{}[x:T1  \mtimes{}  U1].  \mforall{}[y:T2  \mtimes{}  U2].  \mforall{}[b:\mBbbB{}].
    ((fst(if  b  then  x  else  y  fi  ))  =  if  b  then  fst(x)  else  fst(y)  fi  )



Date html generated: 2016_05_13-PM-04_01_32
Last ObjectModification: 2015_12_26-AM-10_48_58

Theory : bool_1


Home Index