Nuprl Lemma : apply-ifthenelse-pi2-eq
∀[T1,U1,T2,U2:Type]. ∀[x:T1 × U1]. ∀[y:T2 × U2]. ∀[b:𝔹].
  ((snd(if b then x else y fi )) = if b then snd(x) else snd(y) fi  ∈ if b then U1 else U2 fi )
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
pi2: snd(t)
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bool: 𝔹
, 
ifthenelse: if b then t else f fi 
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
pi2_wf, 
bool_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
unionElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
productEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[T1,U1,T2,U2:Type].  \mforall{}[x:T1  \mtimes{}  U1].  \mforall{}[y:T2  \mtimes{}  U2].  \mforall{}[b:\mBbbB{}].
    ((snd(if  b  then  x  else  y  fi  ))  =  if  b  then  snd(x)  else  snd(y)  fi  )
Date html generated:
2016_05_13-PM-04_01_38
Last ObjectModification:
2015_12_26-AM-10_49_06
Theory : bool_1
Home
Index