Nuprl Lemma : apply-ifthenelse-pi2-eq
∀[T1,U1,T2,U2:Type]. ∀[x:T1 × U1]. ∀[y:T2 × U2]. ∀[b:𝔹].
((snd(if b then x else y fi )) = if b then snd(x) else snd(y) fi ∈ if b then U1 else U2 fi )
Proof
Definitions occuring in Statement :
ifthenelse: if b then t else f fi
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
pi2: snd(t)
,
product: x:A × B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
bool: 𝔹
,
ifthenelse: if b then t else f fi
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
pi2_wf,
bool_wf
Rules used in proof :
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
unionElimination,
thin,
sqequalRule,
cut,
lemma_by_obid,
isectElimination,
hypothesisEquality,
lambdaEquality,
hypothesis,
because_Cache,
productEquality,
universeEquality,
isect_memberFormation,
introduction,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[T1,U1,T2,U2:Type]. \mforall{}[x:T1 \mtimes{} U1]. \mforall{}[y:T2 \mtimes{} U2]. \mforall{}[b:\mBbbB{}].
((snd(if b then x else y fi )) = if b then snd(x) else snd(y) fi )
Date html generated:
2016_05_13-PM-04_01_38
Last ObjectModification:
2015_12_26-AM-10_49_06
Theory : bool_1
Home
Index