Nuprl Lemma : bnot_bnot

[p:Top]. b¬bp ∧b tt)


Proof




Definitions occuring in Statement :  band: p ∧b q bnot: ¬bb btrue: tt uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bnot: ¬bb ifthenelse: if then else fi  band: p ∧b q so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a bfalse: ff btrue: tt
Lemmas referenced :  lifting-strict-decide strict4-decide top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination hypothesis sqequalAxiom

Latex:
\mforall{}[p:Top].  (\mneg{}\msubb{}\mneg{}\msubb{}p  \msim{}  p  \mwedge{}\msubb{}  tt)



Date html generated: 2018_05_21-PM-00_03_33
Last ObjectModification: 2018_05_19-AM-07_10_48

Theory : bool_1


Home Index