Nuprl Lemma : bnot_bnot
∀[p:Top]. (¬b¬bp ~ p ∧b tt)
Proof
Definitions occuring in Statement : 
band: p ∧b q
, 
bnot: ¬bb
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
band: p ∧b q
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
lifting-strict-decide, 
strict4-decide, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[p:Top].  (\mneg{}\msubb{}\mneg{}\msubb{}p  \msim{}  p  \mwedge{}\msubb{}  tt)
Date html generated:
2018_05_21-PM-00_03_33
Last ObjectModification:
2018_05_19-AM-07_10_48
Theory : bool_1
Home
Index