Nuprl Lemma : bor_band_distributive
∀[a,b,c:Top].  (a ∨b(b ∧b c) ~ (a ∨bb) ∧b (a ∨bc))
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
band: p ∧b q
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
band: p ∧b q
, 
bfalse: ff
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
Lemmas referenced : 
lifting-strict-decide, 
istype-void, 
strict4-decide, 
has-value_wf_base, 
is-exception_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
because_Cache, 
sqequalSqle, 
divergentSqle, 
callbyvalueDecide, 
unionElimination, 
sqleReflexivity, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
axiomSqEquality, 
Error :universeIsType
Latex:
\mforall{}[a,b,c:Top].    (a  \mvee{}\msubb{}(b  \mwedge{}\msubb{}  c)  \msim{}  (a  \mvee{}\msubb{}b)  \mwedge{}\msubb{}  (a  \mvee{}\msubb{}c))
Date html generated:
2019_06_20-PM-01_04_46
Last ObjectModification:
2019_06_20-PM-01_01_06
Theory : bool_1
Home
Index