Nuprl Lemma : bor_band_distributive
∀[a,b,c:Top]. (a ∨b(b ∧b c) ~ (a ∨bb) ∧b (a ∨bc))
Proof
Definitions occuring in Statement :
bor: p ∨bq
,
band: p ∧b q
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bor: p ∨bq
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
it: ⋅
,
band: p ∧b q
,
bfalse: ff
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
so_lambda: λ2x.t[x]
,
top: Top
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
Lemmas referenced :
lifting-strict-decide,
istype-void,
strict4-decide,
has-value_wf_base,
is-exception_wf,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
baseClosed,
Error :isect_memberEquality_alt,
voidElimination,
hypothesis,
independent_isectElimination,
hypothesisEquality,
Error :inhabitedIsType,
Error :lambdaFormation_alt,
because_Cache,
sqequalSqle,
divergentSqle,
callbyvalueDecide,
unionElimination,
sqleReflexivity,
Error :equalityIsType1,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
decideExceptionCases,
axiomSqleEquality,
exceptionSqequal,
baseApply,
closedConclusion,
axiomSqEquality,
Error :universeIsType
Latex:
\mforall{}[a,b,c:Top]. (a \mvee{}\msubb{}(b \mwedge{}\msubb{} c) \msim{} (a \mvee{}\msubb{}b) \mwedge{}\msubb{} (a \mvee{}\msubb{}c))
Date html generated:
2019_06_20-PM-01_04_46
Last ObjectModification:
2019_06_20-PM-01_01_06
Theory : bool_1
Home
Index