Nuprl Lemma : bor_band_distributive

[a,b,c:Top].  (a ∨b(b ∧b c) (a ∨bb) ∧b (a ∨bc))


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bor: p ∨bq ifthenelse: if then else fi  btrue: tt it: band: p ∧b q bfalse: ff so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q has-value: (a)↓
Lemmas referenced :  lifting-strict-decide istype-void strict4-decide has-value_wf_base is-exception_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed Error :isect_memberEquality_alt,  voidElimination hypothesis independent_isectElimination hypothesisEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  because_Cache sqequalSqle divergentSqle callbyvalueDecide unionElimination sqleReflexivity Error :equalityIsType1,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion axiomSqEquality Error :universeIsType

Latex:
\mforall{}[a,b,c:Top].    (a  \mvee{}\msubb{}(b  \mwedge{}\msubb{}  c)  \msim{}  (a  \mvee{}\msubb{}b)  \mwedge{}\msubb{}  (a  \mvee{}\msubb{}c))



Date html generated: 2019_06_20-PM-01_04_46
Last ObjectModification: 2019_06_20-PM-01_01_06

Theory : bool_1


Home Index