Nuprl Lemma : has-value-bor-type
∀[a,b:Base].  a ∈ Top + Top supposing (a ∨bb)↓
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
union: left + right
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
callbyvalueDecide, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b:Base].    a  \mmember{}  Top  +  Top  supposing  (a  \mvee{}\msubb{}b)\mdownarrow{}
Date html generated:
2016_05_13-PM-03_59_45
Last ObjectModification:
2016_01_14-PM-07_20_52
Theory : bool_1
Home
Index