Nuprl Lemma : subtype_rel_union_left

[A,B:Type].  (A ⊆(A ⋃ B))


Proof




Definitions occuring in Statement :  b-union: A ⋃ B subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_b-union-left
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    (A  \msubseteq{}r  (A  \mcup{}  B))



Date html generated: 2016_05_13-PM-03_57_50
Last ObjectModification: 2015_12_26-AM-10_51_14

Theory : bool_1


Home Index