Nuprl Lemma : subtype_rel_union_right
∀[A,B:Type].  (B ⊆r (A ⋃ B))
Proof
Definitions occuring in Statement : 
b-union: A ⋃ B
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_b-union-right
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:Type].    (B  \msubseteq{}r  (A  \mcup{}  B))
Date html generated:
2016_05_13-PM-03_57_52
Last ObjectModification:
2015_12_26-AM-10_51_10
Theory : bool_1
Home
Index