Nuprl Lemma : atom-implies-ispair-right

[b,c:Top]. ∀[a:Atom].  (if is pair then otherwise c)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top ispair: if is pair then otherwise b atom: Atom sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B implies:  Q uimplies: supposing a or: P ∨ Q not: ¬A false: False
Lemmas referenced :  has-value-implies-dec-ispair atom_subtype_base value-type-has-value atom-value-type not-btrue-sqeq-bfalse top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lemma_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality applyEquality hypothesis independent_functionElimination isectElimination atomEquality independent_isectElimination unionElimination isatomReduceTrue voidElimination sqequalAxiom isect_memberEquality because_Cache

Latex:
\mforall{}[b,c:Top].  \mforall{}[a:Atom].    (if  a  is  a  pair  then  b  otherwise  c  \msim{}  c)



Date html generated: 2016_05_13-PM-03_28_16
Last ObjectModification: 2015_12_26-AM-09_27_26

Theory : call!by!value_1


Home Index