Nuprl Lemma : evalall-atom

[x:Atom]. (evalall(x) x)


Proof




Definitions occuring in Statement :  evalall: evalall(t) uall: [x:A]. B[x] atom: Atom sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a evalall: evalall(t) has-value: (a)↓ sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B or: P ∨ Q not: ¬A false: False outl: outl(x) outr: outr(x)
Lemmas referenced :  subtype_base_sq atom_subtype_base istype-atom has-value-implies-dec-ispair not-btrue-sqeq-bfalse has-value-implies-dec-isinl has-value-implies-dec-isinr
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity atomEquality independent_isectElimination hypothesis sqequalRule callbyvalueReduce callbyvalueAtom hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality baseApply closedConclusion baseClosed applyEquality unionElimination isatomReduceTrue because_Cache voidElimination

Latex:
\mforall{}[x:Atom].  (evalall(x)  \msim{}  x)



Date html generated: 2019_06_20-AM-11_21_01
Last ObjectModification: 2018_10_16-PM-02_57_09

Theory : call!by!value_1


Home Index