Nuprl Lemma : has-value-implies-dec-isinr
∀t,a,b:Base.  ((t)↓ 
⇒ ((t ~ inr outr(t) ) ∨ (if t is inr then a else b ~ b)))
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
outr: outr(x)
, 
isinr: isinr def, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
inr: inr x 
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
outr: outr(x)
, 
or: P ∨ Q
, 
top: Top
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
top_wf, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isinrCases, 
divergentSqle, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
hypothesisEquality, 
sqequalRule, 
inlFormation, 
sqequalIntensionalEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
inrFormation, 
baseApply, 
closedConclusion
Latex:
\mforall{}t,a,b:Base.    ((t)\mdownarrow{}  {}\mRightarrow{}  ((t  \msim{}  inr  outr(t)  )  \mvee{}  (if  t  is  inr  then  a  else  b  \msim{}  b)))
Date html generated:
2016_05_13-PM-03_22_43
Last ObjectModification:
2016_01_14-PM-06_46_43
Theory : call!by!value_1
Home
Index