Nuprl Lemma : ex-sqle_wf

[e:Atom2]. ∀[t,t':Base].  (ex-sqle(e;t;t') ∈ ℙ)


Proof




Definitions occuring in Statement :  ex-sqle: ex-sqle(e;t;t') atom: Atom$n uall: [x:A]. B[x] prop: member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ex-sqle: ex-sqle(e;t;t') subtype_rel: A ⊆B
Lemmas referenced :  sqle_wf_base atom2_subtype_base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseApply closedConclusion baseClosed hypothesisEquality applyEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality atomnEquality

Latex:
\mforall{}[e:Atom2].  \mforall{}[t,t':Base].    (ex-sqle(e;t;t')  \mmember{}  \mBbbP{})



Date html generated: 2017_02_20-AM-10_46_39
Last ObjectModification: 2017_01_25-PM-04_58_05

Theory : call!by!value_1


Home Index