Nuprl Lemma : ex-sqle_wf
∀[e:Atom2]. ∀[t,t':Base].  (ex-sqle(e;t;t') ∈ ℙ)
Proof
Definitions occuring in Statement : 
ex-sqle: ex-sqle(e;t;t')
, 
atom: Atom$n
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ex-sqle: ex-sqle(e;t;t')
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sqle_wf_base, 
atom2_subtype_base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
atomnEquality
Latex:
\mforall{}[e:Atom2].  \mforall{}[t,t':Base].    (ex-sqle(e;t;t')  \mmember{}  \mBbbP{})
Date html generated:
2017_02_20-AM-10_46_39
Last ObjectModification:
2017_01_25-PM-04_58_05
Theory : call!by!value_1
Home
Index