Nuprl Lemma : exception-type_wf

[T:Type]. (exception-type(T) ∈ Type)


Proof




Definitions occuring in Statement :  exception-type: exception-type(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T exception-type: exception-type(T) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  base_wf isect_wf equal-wf-base is-exception_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality lemma_by_obid isectElimination thin hypothesisEquality because_Cache lambdaEquality

Latex:
\mforall{}[T:Type].  (exception-type(T)  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_24_37
Last ObjectModification: 2015_12_26-AM-09_29_55

Theory : call!by!value_1


Home Index