Nuprl Lemma : has-valueall-has-value
∀[a:Base]. (a)↓ supposing has-valueall(a)
Proof
Definitions occuring in Statement : 
has-valueall: has-valueall(a), 
has-value: (a)↓, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
has-valueall: has-valueall(a), 
evalall: evalall(t), 
has-value: (a)↓, 
prop: ℙ
Lemmas referenced : 
has-valueall_wf_base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
axiomSqleEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:Base].  (a)\mdownarrow{}  supposing  has-valueall(a)
 Date html generated: 
2016_05_13-PM-03_25_21
 Last ObjectModification: 
2015_12_26-AM-09_29_17
Theory : call!by!value_1
Home
Index