Nuprl Lemma : isaxiom-bool-if-has-value
∀[t:Base]. isaxiom(t) ∈ 𝔹 supposing (t)↓
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
isaxiom: if z = Ax then a otherwise b
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
bfalse_wf, 
top_wf, 
btrue_wf, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
isaxiomCases, 
divergentSqle, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
hypothesisEquality, 
sqequalRule, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[t:Base].  isaxiom(t)  \mmember{}  \mBbbB{}  supposing  (t)\mdownarrow{}
Date html generated:
2016_05_13-PM-03_22_03
Last ObjectModification:
2016_01_14-PM-06_47_11
Theory : call!by!value_1
Home
Index