Nuprl Lemma : isaxiom-bool-if-has-value

[t:Base]. isaxiom(t) ∈ 𝔹 supposing (t)↓


Proof




Definitions occuring in Statement :  has-value: (a)↓ bfalse: ff btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] isaxiom: if Ax then otherwise b member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ top: Top prop:
Lemmas referenced :  base_wf bfalse_wf top_wf btrue_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut isaxiomCases divergentSqle hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed hypothesisEquality sqequalRule sqequalAxiom isect_memberEquality because_Cache voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:Base].  isaxiom(t)  \mmember{}  \mBbbB{}  supposing  (t)\mdownarrow{}



Date html generated: 2016_05_13-PM-03_22_03
Last ObjectModification: 2016_01_14-PM-06_47_11

Theory : call!by!value_1


Home Index