Nuprl Lemma : isaxiom-implies-sq
∀[t:Base]. t ~ Ax supposing isaxiom(t) ~ tt
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
isaxiom: if z = Ax then a otherwise b
, 
base: Base
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
btrue: tt
Lemmas referenced : 
base_wf, 
assert_of_tt, 
isaxiom-implies, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
divergentSqle, 
sqleReflexivity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
callbyvalueIsaxiom, 
sqequalAxiom, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[t:Base].  t  \msim{}  Ax  supposing  isaxiom(t)  \msim{}  tt
Date html generated:
2016_05_13-PM-03_27_14
Last ObjectModification:
2016_01_14-PM-06_43_19
Theory : call!by!value_1
Home
Index