Nuprl Lemma : isaxiom-implies-sq

[t:Base]. Ax supposing isaxiom(t) tt


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt uimplies: supposing a uall: [x:A]. B[x] isaxiom: if Ax then otherwise b base: Base sqequal: t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ btrue: tt
Lemmas referenced :  base_wf assert_of_tt isaxiom-implies is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalRule divergentSqle sqleReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed hypothesisEquality independent_isectElimination callbyvalueIsaxiom sqequalAxiom sqequalIntensionalEquality baseApply closedConclusion isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:Base].  t  \msim{}  Ax  supposing  isaxiom(t)  \msim{}  tt



Date html generated: 2016_05_13-PM-03_27_14
Last ObjectModification: 2016_01_14-PM-06_43_19

Theory : call!by!value_1


Home Index