Nuprl Lemma : isinr-member
∀[T:Type]. ∀[t:Base]. ∀[a,b:T].  if t is inr then a else b ∈ T supposing (t)↓
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
isinr: isinr def, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
top_wf, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
isinrCases, 
divergentSqle, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
hypothesisEquality, 
sqequalRule, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:Base].  \mforall{}[a,b:T].    if  t  is  inr  then  a  else  b  \mmember{}  T  supposing  (t)\mdownarrow{}
Date html generated:
2016_05_13-PM-03_21_59
Last ObjectModification:
2016_01_14-PM-06_47_14
Theory : call!by!value_1
Home
Index