Nuprl Lemma : not-atom-member-int

[t:Atom]. (t ∈ ℤ))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] not: ¬A member: t ∈ T int: atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False subtype_rel: A ⊆B uimplies: supposing a assert: b ifthenelse: if then else fi  btrue: tt true: True prop:
Lemmas referenced :  isatom-implies-not-isint atom_subtype_base value-type-has-value int-value-type equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule independent_isectElimination because_Cache equalityTransitivity equalitySymmetry isintReduceTrue independent_functionElimination natural_numberEquality voidElimination intEquality lambdaEquality dependent_functionElimination atomEquality isatomReduceTrue

Latex:
\mforall{}[t:Atom].  (\mneg{}(t  \mmember{}  \mBbbZ{}))



Date html generated: 2016_05_13-PM-03_28_06
Last ObjectModification: 2015_12_26-AM-09_27_28

Theory : call!by!value_1


Home Index