Nuprl Lemma : not-atom-member-int
∀[t:Atom]. (¬(t ∈ ℤ))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
int: ℤ
, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
prop: ℙ
Lemmas referenced : 
isatom-implies-not-isint, 
atom_subtype_base, 
value-type-has-value, 
int-value-type, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
isintReduceTrue, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
intEquality, 
lambdaEquality, 
dependent_functionElimination, 
atomEquality, 
isatomReduceTrue
Latex:
\mforall{}[t:Atom].  (\mneg{}(t  \mmember{}  \mBbbZ{}))
Date html generated:
2016_05_13-PM-03_28_06
Last ObjectModification:
2015_12_26-AM-09_27_28
Theory : call!by!value_1
Home
Index