Nuprl Lemma : strict-strict4
∀F:Base. (strict(F) 
⇒ strict4(λx,y,z,w. F[x]))
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
strict: strict(F)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
base: Base
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
strict: strict(F)
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
strict_wf, 
strict-strict1, 
strict1-strict4
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
hypothesis
Latex:
\mforall{}F:Base.  (strict(F)  {}\mRightarrow{}  strict4(\mlambda{}x,y,z,w.  F[x]))
Date html generated:
2016_05_13-PM-03_23_52
Last ObjectModification:
2016_01_14-PM-06_45_32
Theory : call!by!value_1
Home
Index