Nuprl Lemma : nat-prop_wf

[n:ℕ]. (nat-prop{i:l}(n) ∈ 𝕌')


Proof




Definitions occuring in Statement :  nat-prop: nat-prop{i:l}(n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q
Lemmas referenced :  nat-prop-dep-all-wf istype-nat
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (nat-prop\{i:l\}(n)  \mmember{}  \mBbbU{}')



Date html generated: 2020_05_19-PM-09_39_52
Last ObjectModification: 2020_03_04-PM-03_43_43

Theory : co-recursion-2


Home Index