Nuprl Lemma : nat-prop_wf
∀[n:ℕ]. (nat-prop{i:l}(n) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
nat-prop: nat-prop{i:l}(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
Lemmas referenced : 
nat-prop-dep-all-wf, 
istype-nat
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (nat-prop\{i:l\}(n)  \mmember{}  \mBbbU{}')
Date html generated:
2020_05_19-PM-09_39_52
Last ObjectModification:
2020_03_04-PM-03_43_43
Theory : co-recursion-2
Home
Index