Nuprl Lemma : nat-prop-dep-all-wf
∀[n:ℕ]. ((nat-prop{i:l}(n) ∈ 𝕌') ∧ (∀P:nat-prop{i:l}(n). ∀j:ℕn + 1.  (dep-all(j;i.P[i]) ∈ ℙ)))
Proof
Definitions occuring in Statement : 
dep-all: dep-all(n;i.P[i])
, 
nat-prop: nat-prop{i:l}(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
nat-prop: nat-prop{i:l}(n)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
dep-all: dep-all(n;i.P[i])
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_wf, 
subtract-1-ge-0, 
istype-nat, 
top_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
true_wf, 
int_seg_subtype_special, 
int_seg_cases, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
subtype_rel_universe1, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-top, 
dep-isect_wf, 
subtract-add-cancel, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
subtract_wf, 
dep-isect-wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
addEquality, 
because_Cache, 
cumulativity, 
unionElimination, 
instantiate, 
intEquality, 
hypothesis_subsumption, 
closedConclusion, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
equalityIstype, 
promote_hyp, 
functionEquality, 
isectEquality, 
universeEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
dependentIntersectionElimination
Latex:
\mforall{}[n:\mBbbN{}].  ((nat-prop\{i:l\}(n)  \mmember{}  \mBbbU{}')  \mwedge{}  (\mforall{}P:nat-prop\{i:l\}(n).  \mforall{}j:\mBbbN{}n  +  1.    (dep-all(j;i.P[i])  \mmember{}  \mBbbP{})))
Date html generated:
2020_05_19-PM-09_39_49
Last ObjectModification:
2020_03_05-PM-02_52_37
Theory : co-recursion-2
Home
Index