Nuprl Lemma : nat-prop-dep-all-wf

[n:ℕ]. ((nat-prop{i:l}(n) ∈ 𝕌') ∧ (∀P:nat-prop{i:l}(n). ∀j:ℕ1.  (dep-all(j;i.P[i]) ∈ ℙ)))


Proof




Definitions occuring in Statement :  dep-all: dep-all(n;i.P[i]) nat-prop: nat-prop{i:l}(n) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] and: P ∧ Q member: t ∈ T add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: cand: c∧ B nat-prop: nat-prop{i:l}(n) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} dep-all: dep-all(n;i.P[i]) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True squash: T subtype_rel: A ⊆B bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_wf subtract-1-ge-0 istype-nat top_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties true_wf int_seg_subtype_special int_seg_cases lt_int_wf eqtt_to_assert assert_of_lt_int subtype_rel_universe1 eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-top dep-isect_wf subtract-add-cancel decidable__lt intformnot_wf int_formula_prop_not_lemma istype-le subtract_wf dep-isect-wf decidable__le itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType voidElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType addEquality because_Cache cumulativity unionElimination instantiate intEquality hypothesis_subsumption closedConclusion equalityElimination lessCases axiomSqEquality isect_memberEquality_alt isectIsTypeImplies imageMemberEquality baseClosed imageElimination applyEquality equalityIstype promote_hyp functionEquality isectEquality universeEquality dependent_set_memberEquality_alt productIsType dependentIntersectionElimination

Latex:
\mforall{}[n:\mBbbN{}].  ((nat-prop\{i:l\}(n)  \mmember{}  \mBbbU{}')  \mwedge{}  (\mforall{}P:nat-prop\{i:l\}(n).  \mforall{}j:\mBbbN{}n  +  1.    (dep-all(j;i.P[i])  \mmember{}  \mBbbP{})))



Date html generated: 2020_05_19-PM-09_39_49
Last ObjectModification: 2020_03_05-PM-02_52_37

Theory : co-recursion-2


Home Index