Step * 1 1 1 1 1 1 1 1 1 of Lemma win2-iff


1. SimpleGame
2. : ∀[n:ℕ]. win2strat(g;n)
3. {p:Pos(g)| Legal1(InitialPos(g);p)} 
4. s ∈ win2strat(g;1 1)
5. s ∈ moves:{f:strat2play(g;0;s)| ||f|| 2 ∈ ℤ}  ⟶ {p:Pos(g)| Legal2(moves[1];p)} 
6. seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ {f:strat2play(g;0;s)| ||f|| 2 ∈ ℤ
7. seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ {q:Pos(g)| Legal2(p;q)} 
8. : ℤ
9. 0 < n
10. λmvs.(s seq-cons(InitialPos(g);seq-cons(p;mvs))) ∈ win2strat(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n 
    1)
11. ¬(n 0 ∈ ℤ)
12. mvs strat2play(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n 
1;λmvs.(s seq-cons(InitialPos(g);seq-cons(p;mvs))))
13. ||mvs|| (2 n) ∈ ℤ
14. g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ SimpleGame
15. Pos(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()))) ⊆Pos(g)
⊢ seq-cons(InitialPos(g);seq-cons(p;mvs)) ∈ strat2play(g;n;s)
BY
(Assert ⌜mvs ∈ sequence(Pos(g))⌝⋅ THENM (Assert seq-cons(InitialPos(g);seq-cons(p;mvs)) ∈ sequence(Pos(g)) BY Auto)) }

1
.....assertion..... 
1. SimpleGame
2. : ∀[n:ℕ]. win2strat(g;n)
3. {p:Pos(g)| Legal1(InitialPos(g);p)} 
4. s ∈ win2strat(g;1 1)
5. s ∈ moves:{f:strat2play(g;0;s)| ||f|| 2 ∈ ℤ}  ⟶ {p:Pos(g)| Legal2(moves[1];p)} 
6. seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ {f:strat2play(g;0;s)| ||f|| 2 ∈ ℤ
7. seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ {q:Pos(g)| Legal2(p;q)} 
8. : ℤ
9. 0 < n
10. λmvs.(s seq-cons(InitialPos(g);seq-cons(p;mvs))) ∈ win2strat(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n 
    1)
11. ¬(n 0 ∈ ℤ)
12. mvs strat2play(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n 
1;λmvs.(s seq-cons(InitialPos(g);seq-cons(p;mvs))))
13. ||mvs|| (2 n) ∈ ℤ
14. g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ SimpleGame
15. Pos(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()))) ⊆Pos(g)
⊢ mvs ∈ sequence(Pos(g))

2
1. SimpleGame
2. : ∀[n:ℕ]. win2strat(g;n)
3. {p:Pos(g)| Legal1(InitialPos(g);p)} 
4. s ∈ win2strat(g;1 1)
5. s ∈ moves:{f:strat2play(g;0;s)| ||f|| 2 ∈ ℤ}  ⟶ {p:Pos(g)| Legal2(moves[1];p)} 
6. seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ {f:strat2play(g;0;s)| ||f|| 2 ∈ ℤ
7. seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ {q:Pos(g)| Legal2(p;q)} 
8. : ℤ
9. 0 < n
10. λmvs.(s seq-cons(InitialPos(g);seq-cons(p;mvs))) ∈ win2strat(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n 
    1)
11. ¬(n 0 ∈ ℤ)
12. mvs strat2play(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n 
1;λmvs.(s seq-cons(InitialPos(g);seq-cons(p;mvs))))
13. ||mvs|| (2 n) ∈ ℤ
14. g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil())) ∈ SimpleGame
15. Pos(g@s seq-cons(InitialPos(g);seq-cons(p;seq-nil()))) ⊆Pos(g)
16. mvs ∈ sequence(Pos(g))
17. seq-cons(InitialPos(g);seq-cons(p;mvs)) ∈ sequence(Pos(g))
⊢ seq-cons(InitialPos(g);seq-cons(p;mvs)) ∈ strat2play(g;n;s)


Latex:


Latex:

1.  g  :  SimpleGame
2.  s  :  \mforall{}[n:\mBbbN{}].  win2strat(g;n)
3.  p  :  \{p:Pos(g)|  Legal1(InitialPos(g);p)\} 
4.  s  \mmember{}  win2strat(g;1  -  1)
5.  s  \mmember{}  moves:\{f:strat2play(g;0;s)|  ||f||  =  2\}    {}\mrightarrow{}  \{p:Pos(g)|  Legal2(moves[1];p)\} 
6.  seq-cons(InitialPos(g);seq-cons(p;seq-nil()))  \mmember{}  \{f:strat2play(g;0;s)|  ||f||  =  2\} 
7.  s  seq-cons(InitialPos(g);seq-cons(p;seq-nil()))  \mmember{}  \{q:Pos(g)|  Legal2(p;q)\} 
8.  n  :  \mBbbZ{}
9.  0  <  n
10.  \mlambda{}mvs.(s  seq-cons(InitialPos(g);seq-cons(p;mvs)))
        \mmember{}  win2strat(g@s  seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n  -  1)
11.  \mneg{}(n  =  0)
12.  mvs  :  strat2play(g@s  seq-cons(InitialPos(g);seq-cons(p;seq-nil()));n 
-  1;\mlambda{}mvs.(s  seq-cons(InitialPos(g);seq-cons(p;mvs))))
13.  ||mvs||  =  (2  *  n)
14.  g@s  seq-cons(InitialPos(g);seq-cons(p;seq-nil()))  \mmember{}  SimpleGame
15.  Pos(g@s  seq-cons(InitialPos(g);seq-cons(p;seq-nil())))  \msubseteq{}r  Pos(g)
\mvdash{}  seq-cons(InitialPos(g);seq-cons(p;mvs))  \mmember{}  strat2play(g;n;s)


By


Latex:
(Assert  \mkleeneopen{}mvs  \mmember{}  sequence(Pos(g))\mkleeneclose{}\mcdot{}
THENM  (Assert  seq-cons(InitialPos(g);seq-cons(p;mvs))  \mmember{}  sequence(Pos(g))  BY
                          Auto)
)




Home Index