Nuprl Lemma : coWsup_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[a:A]. ∀[f:B[a] ⟶ coW(A;a.B[a])].  (coWsup(a;f) ∈ coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coWsup: coWsup(a;f) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  and: P ∧ Q ext-eq: A ≡ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] coWsup: coWsup(a;f) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW-ext coW_wf
Rules used in proof :  productElimination universeEquality isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache hypothesis lambdaEquality isectElimination sqequalHypSubstitution extract_by_obid instantiate thin applyEquality cumulativity functionEquality hypothesisEquality dependent_pairEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].  \mforall{}[f:B[a]  {}\mrightarrow{}  coW(A;a.B[a])].    (coWsup(a;f)  \mmember{}  coW(A;a.B[a]))



Date html generated: 2018_07_25-PM-01_37_41
Last ObjectModification: 2018_07_21-PM-04_45_41

Theory : co-recursion


Home Index