Nuprl Lemma : coWsup_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[a:A]. ∀[f:B[a] ⟶ coW(A;a.B[a])].  (coWsup(a;f) ∈ coW(A;a.B[a]))
Proof
Definitions occuring in Statement : 
coWsup: coWsup(a;f)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
coWsup: coWsup(a;f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW-ext, 
coW_wf
Rules used in proof : 
productElimination, 
universeEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].  \mforall{}[f:B[a]  {}\mrightarrow{}  coW(A;a.B[a])].    (coWsup(a;f)  \mmember{}  coW(A;a.B[a]))
Date html generated:
2018_07_25-PM-01_37_41
Last ObjectModification:
2018_07_21-PM-04_45_41
Theory : co-recursion
Home
Index