Step * 1 1 1 of Lemma corec-rel-wf2


1. : 𝕌' ⟶ 𝕌'
2. continuous-monotone{i':l}(T.F[T])
3. : ⋂T:𝕌'. ((T ⟶ T ⟶ ℙ) ⟶ F[T] ⟶ F[T] ⟶ ℙ)
4. ∀n:ℕ(G^n x,y. True) ∈ primrec(n;Top;λ,T. F[T]) ⟶ primrec(n;Top;λ,T. F[T]) ⟶ ℙ)
5. istype(corec(T.F[T]))
6. corec(T.F[T])
7. corec(T.F[T])
8. : ℕ
⊢ G^n x,y. True) y ∈ ℙ
BY
(InstHyp [⌜n⌝(-5)⋅ THEN Auto) }


Latex:


Latex:

1.  F  :  \mBbbU{}'  {}\mrightarrow{}  \mBbbU{}'
2.  continuous-monotone\{i':l\}(T.F[T])
3.  G  :  \mcap{}T:\mBbbU{}'.  ((T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  \mBbbP{})
4.  \mforall{}n:\mBbbN{}.  (G\^{}n  (\mlambda{}x,y.  True)  \mmember{}  primrec(n;Top;\mlambda{},T.  F[T])  {}\mrightarrow{}  primrec(n;Top;\mlambda{},T.  F[T])  {}\mrightarrow{}  \mBbbP{})
5.  istype(corec(T.F[T]))
6.  x  :  corec(T.F[T])
7.  y  :  corec(T.F[T])
8.  n  :  \mBbbN{}
\mvdash{}  G\^{}n  (\mlambda{}x,y.  True)  x  y  \mmember{}  \mBbbP{}


By


Latex:
(InstHyp  [\mkleeneopen{}n\mkleeneclose{}]  (-5)\mcdot{}  THEN  Auto)




Home Index