Nuprl Lemma : general_corec_wf
∀[I:Type]. ∀[R:I ⟶ I ⟶ ℙ].
  ∀[F:Type ⟶ Type]. (general_corec(I;x,y.R[x;y];T.F[T]) ∈ Type) supposing tcWO(I;x,y.R[x;y])
Proof
Definitions occuring in Statement : 
general_corec: general_corec(I;x,y.R[x; y];T.F[T])
, 
tcWO: tcWO(T;x,y.>[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
general_corec: general_corec(I;x,y.R[x; y];T.F[T])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
iterate_functor_wf, 
tcWO_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
hypothesis, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
cumulativity
Latex:
\mforall{}[I:Type].  \mforall{}[R:I  {}\mrightarrow{}  I  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[F:Type  {}\mrightarrow{}  Type].  (general\_corec(I;x,y.R[x;y];T.F[T])  \mmember{}  Type)  supposing  tcWO(I;x,y.R[x;y])
Date html generated:
2016_05_14-AM-06_11_52
Last ObjectModification:
2015_12_26-PM-00_06_22
Theory : co-recursion
Home
Index