Nuprl Lemma : general_corec_wf

[I:Type]. ∀[R:I ⟶ I ⟶ ℙ].
  ∀[F:Type ⟶ Type]. (general_corec(I;x,y.R[x;y];T.F[T]) ∈ Type) supposing tcWO(I;x,y.R[x;y])


Proof




Definitions occuring in Statement :  general_corec: general_corec(I;x,y.R[x; y];T.F[T]) tcWO: tcWO(T;x,y.>[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a general_corec: general_corec(I;x,y.R[x; y];T.F[T]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  iterate_functor_wf tcWO_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isectEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality independent_isectElimination hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache cumulativity

Latex:
\mforall{}[I:Type].  \mforall{}[R:I  {}\mrightarrow{}  I  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[F:Type  {}\mrightarrow{}  Type].  (general\_corec(I;x,y.R[x;y];T.F[T])  \mmember{}  Type)  supposing  tcWO(I;x,y.R[x;y])



Date html generated: 2016_05_14-AM-06_11_52
Last ObjectModification: 2015_12_26-PM-00_06_22

Theory : co-recursion


Home Index