Nuprl Lemma : isect-family-wf2
∀[P:𝕌{j}]. ∀[A:Type]. ∀[F:A ⟶ P ⟶ Type].  (⋂a:A. F[a] ∈ P ⟶ Type)
Proof
Definitions occuring in Statement : 
isect-family: ⋂a:A. F[a]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
isect-family: ⋂a:A. F[a]
, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
isectEquality, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[P:\mBbbU{}\{j\}].  \mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].    (\mcap{}a:A.  F[a]  \mmember{}  P  {}\mrightarrow{}  Type)
Date html generated:
2016_05_14-AM-06_12_06
Last ObjectModification:
2015_12_26-PM-00_06_17
Theory : co-recursion
Home
Index