Nuprl Lemma : pcw-pp-null_wf
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[pp:PartialPath].
  (pcw-pp-null(pp) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
pcw-pp-null: pcw-pp-null(pp)
, 
pcw-pp: PartialPath
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pcw-pp-null: pcw-pp-null(pp)
, 
pcw-pp: PartialPath
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
le_int_wf, 
pcw-pp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[pp:PartialPath].
    (pcw-pp-null(pp)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-AM-06_13_01
Last ObjectModification:
2015_12_26-PM-00_05_49
Theory : co-recursion
Home
Index