Nuprl Lemma : s-cons_wf

[A:Type]. ∀[x:A]. ∀[s:stream(A)].  (x.s ∈ stream(A))


Proof




Definitions occuring in Statement :  s-cons: x.s stream: stream(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s-cons: x.s subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  stream_wf stream-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule independent_pairEquality hypothesisEquality applyEquality hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin isect_memberEquality because_Cache universeEquality productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[x:A].  \mforall{}[s:stream(A)].    (x.s  \mmember{}  stream(A))



Date html generated: 2016_05_14-AM-06_22_27
Last ObjectModification: 2015_12_26-AM-11_59_26

Theory : co-recursion


Home Index