Nuprl Lemma : sg-pos-normalize
∀[g:SimpleGame]. (Pos(sg-normalize(g)) ~ {p:Pos(g)| sg-reachable(g;InitialPos(g);p)} )
Proof
Definitions occuring in Statement : 
sg-normalize: sg-normalize(g)
, 
sg-reachable: sg-reachable(g;x;y)
, 
sg-init: InitialPos(g)
, 
sg-pos: Pos(g)
, 
simple-game: SimpleGame
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sg-normalize: sg-normalize(g)
Lemmas referenced : 
simple-game_wf, 
sg-pos-change-init
Rules used in proof : 
sqequalAxiom, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  (Pos(sg-normalize(g))  \msim{}  \{p:Pos(g)|  sg-reachable(g;InitialPos(g);p)\}  )
Date html generated:
2018_07_25-PM-01_35_14
Last ObjectModification:
2018_06_20-PM-03_48_14
Theory : co-recursion
Home
Index