Nuprl Lemma : sg-pos-normalize

[g:SimpleGame]. (Pos(sg-normalize(g)) {p:Pos(g)| sg-reachable(g;InitialPos(g);p)} )


Proof




Definitions occuring in Statement :  sg-normalize: sg-normalize(g) sg-reachable: sg-reachable(g;x;y) sg-init: InitialPos(g) sg-pos: Pos(g) simple-game: SimpleGame uall: [x:A]. B[x] set: {x:A| B[x]}  sqequal: t
Definitions unfolded in proof :  top: Top member: t ∈ T uall: [x:A]. B[x] sg-normalize: sg-normalize(g)
Lemmas referenced :  simple-game_wf sg-pos-change-init
Rules used in proof :  sqequalAxiom hypothesis voidEquality voidElimination isect_memberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  (Pos(sg-normalize(g))  \msim{}  \{p:Pos(g)|  sg-reachable(g;InitialPos(g);p)\}  )



Date html generated: 2018_07_25-PM-01_35_14
Last ObjectModification: 2018_06_20-PM-03_48_14

Theory : co-recursion


Home Index