Nuprl Lemma : callbyvalueall-ifthenelse

[C:Base]. ∀[a,A,B:Top].
  (let x ⟵ if then else fi 
   in C[x] if then let x ⟵ in C[x] else let x ⟵ in C[x] fi )


Proof




Definitions occuring in Statement :  callbyvalueall: callbyvalueall ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top so_apply: x[s] base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] uimplies: supposing a
Lemmas referenced :  lifting-strict-ifthenelse strict4-callbyvalueall base_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache baseApply closedConclusion baseClosed voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}[C:Base].  \mforall{}[a,A,B:Top].
    (let  x  \mleftarrow{}{}  if  a  then  A  else  B  fi 
      in  C[x]  \msim{}  if  a  then  let  x  \mleftarrow{}{}  A  in  C[x]  else  let  x  \mleftarrow{}{}  B  in  C[x]  fi  )



Date html generated: 2016_05_13-PM-03_41_56
Last ObjectModification: 2016_01_14-PM-07_08_54

Theory : computation


Home Index