Nuprl Lemma : cbv_sqequal

[a,X,Y:Base].  eval in X[x] eval in Y[x] supposing (a)↓  (X[a] Y[a])


Proof




Definitions occuring in Statement :  has-value: (a)↓ callbyvalue: callbyvalue uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] implies:  Q base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ implies:  Q prop:
Lemmas referenced :  base_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle divergentSqle callbyvalueCallbyvalue sqequalHypSubstitution hypothesis sqequalRule callbyvalueReduce independent_functionElimination thin sqleReflexivity lemma_by_obid isectElimination baseApply closedConclusion baseClosed hypothesisEquality callbyvalueExceptionCases axiomSqleEquality exceptionSqequal sqequalAxiom functionEquality sqequalIntensionalEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,X,Y:Base].    eval  x  =  a  in  X[x]  \msim{}  eval  x  =  a  in  Y[x]  supposing  (a)\mdownarrow{}  {}\mRightarrow{}  (X[a]  \msim{}  Y[a])



Date html generated: 2016_05_13-PM-03_45_50
Last ObjectModification: 2016_01_14-PM-07_06_47

Theory : computation


Home Index