Nuprl Lemma : lifting-callbyvalue-callbyvalue

[a,F,G:Top].  (eval eval in F[y] in G[x] eval in eval F[y] in   G[x])


Proof




Definitions occuring in Statement :  callbyvalue: callbyvalue uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  top_wf is-exception_wf base_wf has-value_wf_base lifting-strict-callbyvalue
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation sqequalAxiom because_Cache

Latex:
\mforall{}[a,F,G:Top].    (eval  x  =  eval  y  =  a  in  F[y]  in  G[x]  \msim{}  eval  y  =  a  in  eval  x  =  F[y]  in      G[x])



Date html generated: 2016_05_13-PM-03_42_19
Last ObjectModification: 2016_01_14-PM-07_08_52

Theory : computation


Home Index