Nuprl Lemma : normalization-spread2
∀[p,F:Top].  (let a,b = p in F[a;b;p] ~ let a,b = p in F[a;b;<a, b>])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
spread: spread def, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
normalization-spread4, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p,F:Top].    (let  a,b  =  p  in  F[a;b;p]  \msim{}  let  a,b  =  p  in  F[a;b;<a,  b>])
Date html generated:
2016_05_13-PM-03_43_26
Last ObjectModification:
2015_12_26-AM-09_52_27
Theory : computation
Home
Index