Nuprl Lemma : normalization-spread4
∀[p,F:Top].  (let a,b = p in F a b p ~ let a,b = p in F a b <a, b>)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
spread: spread def, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
Lemmas referenced : 
top_wf, 
is-exception_wf, 
has-value_wf_base, 
pair-eta
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueSpread, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
sqleReflexivity, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
spreadExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p,F:Top].    (let  a,b  =  p  in  F  a  b  p  \msim{}  let  a,b  =  p  in  F  a  b  <a,  b>)
Date html generated:
2016_05_13-PM-03_43_23
Last ObjectModification:
2016_01_14-PM-07_07_45
Theory : computation
Home
Index