Nuprl Lemma : strictness-isaxiom

[a,b:Top].  (if ⊥ Ax then otherwise ~ ⊥)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top isaxiom: if Ax then otherwise b sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ not: ¬A implies:  Q false: False top: Top
Lemmas referenced :  top_wf bottom-sqle is-exception_wf has-value_wf_base exception-not-bottom bottom_diverge
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueIsaxiom sqequalHypSubstitution hypothesis lemma_by_obid independent_functionElimination voidElimination isaxiomExceptionCases axiomSqleEquality baseClosed isectElimination sqequalRule baseApply closedConclusion hypothesisEquality sqleReflexivity isect_memberEquality voidEquality sqequalAxiom because_Cache

Latex:
\mforall{}[a,b:Top].    (if  \mbot{}  =  Ax  then  a  otherwise  b  \msim{}  \mbot{})



Date html generated: 2016_05_13-PM-03_43_46
Last ObjectModification: 2016_01_14-PM-07_07_31

Theory : computation


Home Index