Nuprl Lemma : trivial-void-arrow

[T,x:Top].  (x ∈ Void ⟶ T)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] void: Void
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  void_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality voidElimination thin instantiate lemma_by_obid hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[T,x:Top].    (x  \mmember{}  Void  {}\mrightarrow{}  T)



Date html generated: 2016_05_13-PM-03_45_06
Last ObjectModification: 2015_12_26-AM-09_51_08

Theory : computation


Home Index