Nuprl Lemma : trivial-void-arrow
∀[T,x:Top].  (x ∈ Void ⟶ T)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
void: Void
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
void_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
voidElimination, 
thin, 
instantiate, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,x:Top].    (x  \mmember{}  Void  {}\mrightarrow{}  T)
Date html generated:
2016_05_13-PM-03_45_06
Last ObjectModification:
2015_12_26-AM-09_51_08
Theory : computation
Home
Index