Nuprl Lemma : CCC-nat2K-implies-CCC-K

[K:Type]. (CCC(ℕ ⟶ K)  CCC(K))


Proof




Definitions occuring in Statement :  contra-cc: CCC(T) nat: uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  false: False not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: prop: subtype_rel: A ⊆B member: t ∈ T exists: x:A. B[x] all: x:A. B[x] contra-cc: CCC(T) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  istype-le istype-void istype-universe nat_wf contra-cc_wf subtype_rel_self istype-nat
Rules used in proof :  Error :dependent_pairFormation_alt,  productElimination independent_functionElimination Error :inhabitedIsType,  voidElimination independent_pairFormation natural_numberEquality Error :dependent_set_memberEquality_alt,  Error :lambdaEquality_alt,  dependent_functionElimination functionEquality universeEquality isectElimination sqequalHypSubstitution instantiate thin applyEquality because_Cache Error :productIsType,  hypothesisEquality Error :universeIsType,  hypothesis extract_by_obid introduction cut Error :functionIsType,  sqequalRule Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Type].  (CCC(\mBbbN{}  {}\mrightarrow{}  K)  {}\mRightarrow{}  CCC(K))



Date html generated: 2019_06_20-PM-03_01_14
Last ObjectModification: 2019_06_14-PM-04_16_00

Theory : continuity


Home Index