Nuprl Lemma : CCC-nat2K-implies-CCC-K
∀[K:Type]. (CCC(ℕ ⟶ K) ⇒ CCC(K))
Proof
Definitions occuring in Statement : 
contra-cc: CCC(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
false: False, 
not: ¬A, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
contra-cc: CCC(T), 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-le, 
istype-void, 
istype-universe, 
nat_wf, 
contra-cc_wf, 
subtype_rel_self, 
istype-nat
Rules used in proof : 
Error :dependent_pairFormation_alt, 
productElimination, 
independent_functionElimination, 
Error :inhabitedIsType, 
voidElimination, 
independent_pairFormation, 
natural_numberEquality, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
functionEquality, 
universeEquality, 
isectElimination, 
sqequalHypSubstitution, 
instantiate, 
thin, 
applyEquality, 
because_Cache, 
Error :productIsType, 
hypothesisEquality, 
Error :universeIsType, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
Error :functionIsType, 
sqequalRule, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Type].  (CCC(\mBbbN{}  {}\mrightarrow{}  K)  {}\mRightarrow{}  CCC(K))
Date html generated:
2019_06_20-PM-03_01_14
Last ObjectModification:
2019_06_14-PM-04_16_00
Theory : continuity
Home
Index