Step
*
1
1
1
of Lemma
cantor-to-int-bounded
1. F : (ℕ ⟶ 𝔹) ⟶ ℤ
2. n : ℕ
3. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℤ))
4. finite(ℕn ⟶ 𝔹)
5. L : (ℕn ⟶ 𝔹) List
6. no_repeats(ℕn ⟶ 𝔹;L)
7. ∀x:ℕn ⟶ 𝔹. (x ∈ L)
⊢ ∃B:ℕ. ∀s:ℕn ⟶ 𝔹. (|F (λi.if i <z n then s i else ff fi )| ≤ B)
BY
{ ((Assert 0 < ||L|| BY
((D -1 With ⌜λi.ff⌝ THENA Auto) THEN RepeatFor 2 (D -1) THEN Auto))
THEN D 0 With ⌜imax-list(map(λs.|F (λi.if i <z n then s i else ff fi )|;L))⌝
THEN Auto) }
1
.....wf.....
1. F : (ℕ ⟶ 𝔹) ⟶ ℤ
2. n : ℕ
3. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℤ))
4. finite(ℕn ⟶ 𝔹)
5. L : (ℕn ⟶ 𝔹) List
6. no_repeats(ℕn ⟶ 𝔹;L)
7. ∀x:ℕn ⟶ 𝔹. (x ∈ L)
8. 0 < ||L||
⊢ imax-list(map(λs.|F (λi.if i <z n then s i else ff fi )|;L)) ∈ ℕ
2
1. F : (ℕ ⟶ 𝔹) ⟶ ℤ
2. n : ℕ
3. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℤ))
4. finite(ℕn ⟶ 𝔹)
5. L : (ℕn ⟶ 𝔹) List
6. no_repeats(ℕn ⟶ 𝔹;L)
7. ∀x:ℕn ⟶ 𝔹. (x ∈ L)
8. 0 < ||L||
9. s : ℕn ⟶ 𝔹
⊢ |F (λi.if i <z n then s i else ff fi )| ≤ imax-list(map(λs.|F (λi.if i <z n then s i else ff fi )|;L))
Latex:
Latex:
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbZ{}
2. n : \mBbbN{}
3. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
4. finite(\mBbbN{}n {}\mrightarrow{} \mBbbB{})
5. L : (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) List
6. no\_repeats(\mBbbN{}n {}\mrightarrow{} \mBbbB{};L)
7. \mforall{}x:\mBbbN{}n {}\mrightarrow{} \mBbbB{}. (x \mmember{} L)
\mvdash{} \mexists{}B:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbB{}. (|F (\mlambda{}i.if i <z n then s i else ff fi )| \mleq{} B)
By
Latex:
((Assert 0 < ||L|| BY
((D -1 With \mkleeneopen{}\mlambda{}i.ff\mkleeneclose{} THENA Auto) THEN RepeatFor 2 (D -1) THEN Auto))
THEN D 0 With \mkleeneopen{}imax-list(map(\mlambda{}s.|F (\mlambda{}i.if i <z n then s i else ff fi )|;L))\mkleeneclose{}
THEN Auto)
Home
Index