Nuprl Lemma : cantor-to-int-bounded

F:(ℕ ⟶ 𝔹) ⟶ ℤ. ∃B:ℕ. ∀f:ℕ ⟶ 𝔹(|F f| ≤ B)


Proof




Definitions occuring in Statement :  absval: |i| nat: bool: 𝔹 le: A ≤ B all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q l_member: (x ∈ l) cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k bfalse: ff subtype_rel: A ⊆B listp: List+ rev_implies:  Q l_exists: (∃x∈L. P[x]) true: True guard: {T} sq_type: SQType(T) bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  cantor-to-int-uniform-continuity istype-nat bool_wf istype-int finite-function int_seg_wf nsub_finite finite-bool finite-iff-listable bfalse_wf nat_properties decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-le absval_wf lt_int_wf eqtt_to_assert assert_of_lt_int decidable__le istype-less_than imax-list-nat map-length map_wf nat_wf imax-list-ub length-map select-map subtype_rel_list top_wf le_weakening squash_wf true_wf equal_wf istype-universe subtype_rel_self iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int_seg_properties select_wf subtype_rel_function int_seg_subtype_nat istype-false le_wf ifthenelse_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination functionIsType universeIsType isectElimination natural_numberEquality setElimination rename because_Cache sqequalRule lambdaEquality_alt independent_functionElimination functionEquality unionElimination imageElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation applyEquality inhabitedIsType equalityElimination dependent_set_memberEquality_alt productIsType equalityIstype equalityTransitivity equalitySymmetry closedConclusion intEquality functionExtensionality functionExtensionality_alt instantiate universeEquality imageMemberEquality baseClosed promote_hyp cumulativity hyp_replacement

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}B:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (|F  f|  \mleq{}  B)



Date html generated: 2019_10_15-AM-10_26_19
Last ObjectModification: 2019_06_26-PM-02_45_48

Theory : continuity


Home Index