Nuprl Lemma : cantor-to-int-bounded
∀F:(ℕ ⟶ 𝔹) ⟶ ℤ. ∃B:ℕ. ∀f:ℕ ⟶ 𝔹. (|F f| ≤ B)
Proof
Definitions occuring in Statement : 
absval: |i|
, 
nat: ℕ
, 
bool: 𝔹
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
listp: A List+
, 
rev_implies: P 
⇐ Q
, 
l_exists: (∃x∈L. P[x])
, 
true: True
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
cantor-to-int-uniform-continuity, 
istype-nat, 
bool_wf, 
istype-int, 
finite-function, 
int_seg_wf, 
nsub_finite, 
finite-bool, 
finite-iff-listable, 
bfalse_wf, 
nat_properties, 
decidable__lt, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-le, 
absval_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
decidable__le, 
istype-less_than, 
imax-list-nat, 
map-length, 
map_wf, 
nat_wf, 
imax-list-ub, 
length-map, 
select-map, 
subtype_rel_list, 
top_wf, 
le_weakening, 
squash_wf, 
true_wf, 
equal_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
int_seg_properties, 
select_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
istype-false, 
le_wf, 
ifthenelse_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
functionIsType, 
universeIsType, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
independent_functionElimination, 
functionEquality, 
unionElimination, 
imageElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
applyEquality, 
inhabitedIsType, 
equalityElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
intEquality, 
functionExtensionality, 
functionExtensionality_alt, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
cumulativity, 
hyp_replacement
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}B:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (|F  f|  \mleq{}  B)
Date html generated:
2019_10_15-AM-10_26_19
Last ObjectModification:
2019_06_26-PM-02_45_48
Theory : continuity
Home
Index