Nuprl Lemma : dccc-nset_wf
∀[K:Type]. (dccc-nset(K) ∈ ℙ)
Proof
Definitions occuring in Statement :
dccc-nset: dccc-nset(K)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
and: P ∧ Q
,
prop: ℙ
,
dccc-nset: dccc-nset(K)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
istype-universe,
contra-dcc_wf,
nat_wf,
subtype_rel_wf
Rules used in proof :
universeEquality,
instantiate,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
hypothesis,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
productEquality,
sqequalRule,
cut,
introduction,
Error :isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[K:Type]. (dccc-nset(K) \mmember{} \mBbbP{})
Date html generated:
2019_06_20-PM-03_01_22
Last ObjectModification:
2019_06_20-AM-10_01_33
Theory : continuity
Home
Index