Nuprl Lemma : dccc-nset_wf
∀[K:Type]. (dccc-nset(K) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dccc-nset: dccc-nset(K)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q
, 
prop: ℙ
, 
dccc-nset: dccc-nset(K)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
contra-dcc_wf, 
nat_wf, 
subtype_rel_wf
Rules used in proof : 
universeEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Type].  (dccc-nset(K)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-03_01_22
Last ObjectModification:
2019_06_20-AM-10_01_33
Theory : continuity
Home
Index