Nuprl Lemma : dccc-nset_wf

[K:Type]. (dccc-nset(K) ∈ ℙ)


Proof




Definitions occuring in Statement :  dccc-nset: dccc-nset(K) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  and: P ∧ Q prop: dccc-nset: dccc-nset(K) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe contra-dcc_wf nat_wf subtype_rel_wf
Rules used in proof :  universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Type].  (dccc-nset(K)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-03_01_22
Last ObjectModification: 2019_06_20-AM-10_01_33

Theory : continuity


Home Index