Step
*
1
1
of Lemma
gen-bar-ind-implies-monotone
1. ∀P:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
     ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. P[n + 1;s.m@n]) 
⇒ P[n;s]))
     
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f]))
     
⇒ ⇃(P[0;λx.⊥]))
2. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
4. bar : ∀s:ℕ ⟶ ℕ. ⇃(∃n:ℕ. B[n;s])
5. mon : ∀n:ℕ. ∀m:ℕn. ∀s:ℕn ⟶ ℕ.  (B[m;s] 
⇒ B[n;s])
6. base : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s])
7. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s])
8. f : ℕ ⟶ ℕ
9. n : ℕ
10. B[n;f]
11. m : {n...}
⊢ Q[m;f]
BY
{ (Assert ⌜B[m;f]⌝⋅ THENM (InstHyp [⌜n⌝;⌜f⌝] (-7)⋅ THEN Auto)) }
1
.....assertion..... 
1. ∀P:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
     ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. P[n + 1;s.m@n]) 
⇒ P[n;s]))
     
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f]))
     
⇒ ⇃(P[0;λx.⊥]))
2. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
4. bar : ∀s:ℕ ⟶ ℕ. ⇃(∃n:ℕ. B[n;s])
5. mon : ∀n:ℕ. ∀m:ℕn. ∀s:ℕn ⟶ ℕ.  (B[m;s] 
⇒ B[n;s])
6. base : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s])
7. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s])
8. f : ℕ ⟶ ℕ
9. n : ℕ
10. B[n;f]
11. m : {n...}
⊢ B[m;f]
Latex:
Latex:
1.  \mforall{}P:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
          ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  P[n  +  1;s.m@n])  {}\mRightarrow{}  P[n;s]))
          {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  P[m;f]))
          {}\mRightarrow{}  \00D9(P[0;\mlambda{}x.\mbot{}]))
2.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
4.  bar  :  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  B[n;s])
5.  mon  :  \mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}n.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[m;s]  {}\mRightarrow{}  B[n;s])
6.  base  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s])
7.  ind  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s])
8.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
9.  n  :  \mBbbN{}
10.  B[n;f]
11.  m  :  \{n...\}
\mvdash{}  Q[m;f]
By
Latex:
(Assert  \mkleeneopen{}B[m;f]\mkleeneclose{}\mcdot{}  THENM  (InstHyp  [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}]  (-7)\mcdot{}  THEN  Auto))
Home
Index