Nuprl Lemma : gen-bar-ind-implies-monotone

(∀P:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
   ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕP[n 1;s.m@n])  P[n;s]))  (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f]))  ⇃(P[0;λx.⊥])))
 (∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ. ∀bar:∀s:ℕ ⟶ ℕ. ⇃(∃n:ℕB[n;s]). ∀mon:∀n:ℕ. ∀m:ℕn. ∀s:ℕn ⟶ ℕ.  (B[m;s]  B[n;s]).
    ∀base:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s]). ∀ind:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s]).
      ⇃(Q[0;seq-normalize(0;⊥)]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-normalize: seq-normalize(n;s) seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: so_apply: x[s1;s2] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k so_lambda: λ2y.t[x; y] int_upper: {i...} squash: T label: ...$L... t sq_type: SQType(T) true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_wf all_wf int_seg_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf seq-add_wf int_seg_subtype_nat false_wf subtype_rel_dep_function int_seg_subtype int_seg_properties intformless_wf int_formula_prop_less_lemma subtype_rel_self quotient_wf exists_wf true_wf equiv_rel_true int_upper_wf int_upper_subtype_nat implies-quotient-true subtract_wf int_upper_properties itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf squash_wf subtype_base_sq int_subtype_base iff_weakening_equal add-zero set_wf less_than_wf primrec-wf2 decidable__lt lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination functionEquality introduction extract_by_obid isectElimination sqequalRule lambdaEquality natural_numberEquality setElimination rename because_Cache applyEquality functionExtensionality dependent_set_memberEquality addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll universeEquality productElimination cumulativity instantiate imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed hyp_replacement applyLambdaEquality

Latex:
(\mforall{}P:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
      ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  P[n  +  1;s.m@n])  {}\mRightarrow{}  P[n;s]))
      {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  P[m;f]))
      {}\mRightarrow{}  \00D9(P[0;\mlambda{}x.\mbot{}])))
{}\mRightarrow{}  (\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}bar:\mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  B[n;s]).  \mforall{}mon:\mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}n.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                                                                (B[m;s]  {}\mRightarrow{}  B[n;s]).
        \mforall{}base:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]).  \mforall{}ind:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                                ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]).
            \00D9(Q[0;seq-normalize(0;\mbot{})]))



Date html generated: 2017_04_20-AM-07_35_16
Last ObjectModification: 2017_02_27-PM-06_03_39

Theory : continuity


Home Index